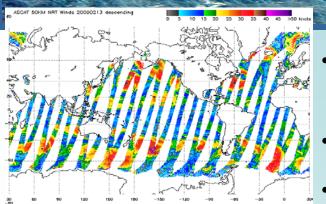
NOAA/NESDIS Update: ScatSat-1 and CYGNSS Missions

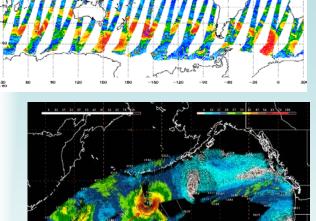
Paul S. Chang
NOAA/NESDIS/Center for Satellite
Applications and Research
May 2, 2017

ScatSat-1

- Launched September 26, 2016
- 5 year mission design life

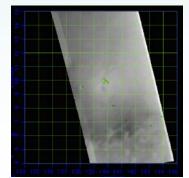
- Characterizing L1b (sigma0) and addressing corrections as necessary
- This was a critically important activity with OSCAT to get products that were of sufficient quality and consistency to support real-time decision making
- Swath coverage will be comparable to QuikSCAT

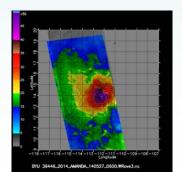

Mission Specifications

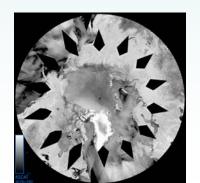


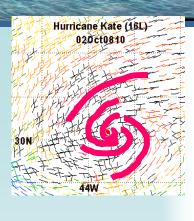
Spacecraft Altitude	720 Km (Nominal)
Inclination	98°
Orbit	Injection at 9:20 am into Polar Non Sun-Synchronous
	orbit; Will be allowed to drift @8sec/day; Planned to
	arrest at 8:45am LT after ∼1year
Frequency	13.515625 GHz
Polarization	HH for inner and VV for Outer beams
Swath	1400 Km (both HH and VV beams available)
	1400-1800 km (only VV beam available)
Wind Speed Range	3-30ms/s
Wind Direction Range	0° to 360°
Wind Speed Accuracy	1.8 m/s rms or 10% whichever is higher
Wind Direction Accuracy	20 ⁰ rms
Wind Vector Cell (grid) Size	25 Km x 25 Km Grid

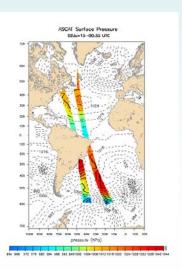
STAR Full Suite of Scatterometry Products – Planned for ScatSat

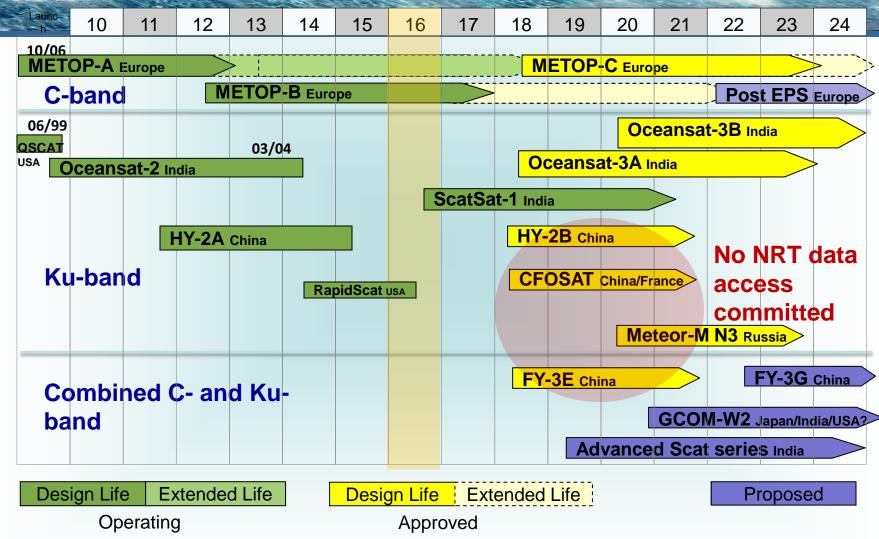









- Scatterometer wind vectors
- Wind vector ambiguities
- NAWIPS and AWIPS ready wind vector products for NWS operations
- **BUFR ready** wind vector products for Data Assimilation
- Ultra high resolutions NRCS imagery for
 - TC positioning
 - Oil spill detections
- Ultra high resolution TC wind vector product
- Scatterometer derived sea surface pressure fields
- Ice products



Potential Issues


- NESDIS is funding level 1 calibration/validation efforts but has not yet made a decision about level 2 products.
 - Level 2 products won't be available until FY18 assuming resources are made available

CEOS Ocean Vector Surface Winds Virtual Constellation (OSVW-VC) Current status and outlook – NRT data access

Source: WMO OSCAR database and direct interactions with agencies

The Cyclone Global Navigation Satellite System (CYGNSS) Mission

Dr. Paul S. Chang and Dr. Zorana Jelenak
NESDIS/STAR/SOCD
NOAA Ocean Winds Science Team
Co-Investigators CYGNSS

July 27, 2016

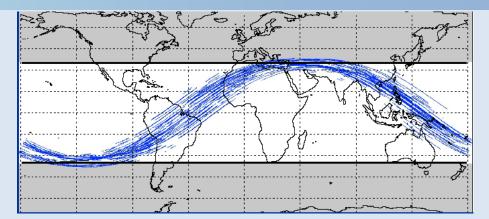
CYGNSS Objectives and Mission Design

NASA Earth Ventures Mission

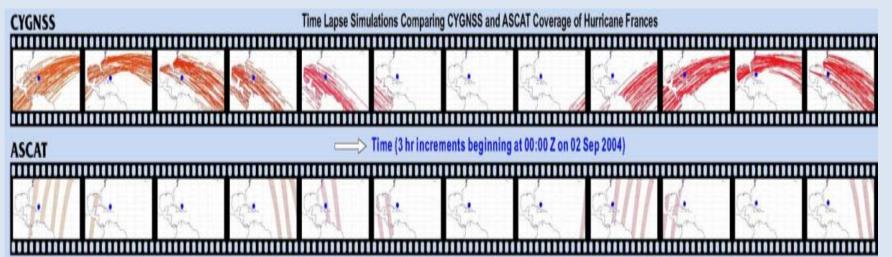
- CYGNSS is the NASA Earth Venture 2 Mission (selected in June 2012)
- Launched December 15, 2016
- First Light January 4, 2017
- Science Operations Phase March 23, 2017

CYGNSS Objectives

- Measure ocean surface wind speed in all precipitating conditions, including those experienced in the tropical cyclone (TC) eyewall
- Measure ocean surface wind speed in the TC inner core with sufficient frequency to resolve genesis and rapid intensification


CYGNSS Mission Design

 Eight satellites in low earth orbit at 35° inclination, each carrying a four-channel modified GPS receiver capable of bi-static radar measurements of GPS signals reflected by the ocean surface


Emerging Technologies

CYGNSS Earth Coverage

- 90 min (one orbit) coverage showing all specular reflection contacts by each of 8 s/c
- 24 hr coverage provides nearly gap free spatial sampling within +/- 35 deg orbit inclination

- Time lapse simulation comparing CYGNSS and ASCAT coverage of Hurricane Frances just before landfall
- Snapshots of all samples taken in 3 hour intervals
- Hurricane inner core shown as large blue dot

CYGNSS Update

- Currently in its cal/val phase
 - Focus now is on L1 (DDM) performance
- NESDIS is part of the core science team and responsible for cal/val and investigating utility for NOAA's weather mission (NASA funded)
- Goal is to release initial level 2 (wind speed) products to the broader science team within the next few months (end of May)
 - Freeze processing updates for hurricane season
- NRT availability is not formally part of the project deliverables (cost versus technical)
 - There will be attempts to try some NRT acquisitions over tropical cyclones
- CYGNSS is a first of its kind mission and we will be characterizing and understanding its capabilities.